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LINEAR OPERATION OF DISCRETE SIGNAL TRACKING

The idea of discrete signal “tracking” action was put into practice many years ago. So-called
dot recorders are best examples of its application. The dynamics of the dot-recorder measuring
mechanism can be linear and nonlinear. In both cases the recorder mechanisms are stable and their
properties can be expressed by static gain (linear case) or certain static characteristics (nonlinear
case). One can formulate two crucial questions: are we able to formulate the conditions for accep-
table realization of discrete “tracking” action, and, if yes, how big are the tracking action errors if
defined conditions are fulfilled. The paper answers both questions in the case of linear dynamics
of the recorder mechanism.
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1. INTRODUCTION

Let us consider that a linear measuring mechanism is excited by an input signal
x(t) and its response Y(t) to x(t) is described by the system of differential equations:

m∑
i=0

ai
diy
dti = x (t)

Y (t) =
r∑

j=0

bj · d
jy

dt j , j < m
(1)

It is obvious that system (1) can be represented by the transfer function :

K (s) =
r∑

j=0

bj · s j


m∑

i=0

ai · si


−1

(2)

or referring responses: the step h(t) and impulse k(t). The discretization of response
Y(t) to signal x(t) makes that periodically, for t = nTi, where i = 1, 2, 3, . . . , the
readings of Y(nTi) are taken (or recorded). Directly after that operation some values
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of derivatives y(i)(nTi) are brought to zero although the duration times (∆t) of the
considered “reset” states can be treated as negligible. We can postulate that the result
of the dotting operation should be Y(nTi) � x(Ti), which means that errors:

D (n · Ti) = Y (n · Ti) − x (n · Ti) , (3)

are not too big [6]. However, errors (3) have to be determined.
Initially let us assume that the operation of reading Y(nTi) brings to zero values

for y(i)(nTi), i = 1, 2, . . . , m, exactly like it happens during the operation of classic
dot-recorders [1, 2, 5]. Using the dependence:

f (t) =̂F (s)

f (i) (t) =̂si · F (s) −
i∑

k=1

f (k−1) (0) · si−k (4)

and the system of Eq. (1) as well as the above assumption, after a certain number of
simple transformations, one obtains the following result:

Y (s) = x (s) · K (s) +
b0

s
· y0 − y0

s
· a0 · K (s) , (5)

where x(s)=̂x(t), whereas y0 denotes the value y(n · Ti) =
Y(n · Ti)

b0
, if time range

nTi ≤ t ≤ nTi + Ti is taken into account. If a0 = 1 we can transform Eq. (5) to the
form:

Y (s) = b0 ·
{

x (s) · K (s)
b0
+

y0

s
·
(
1 − K (s)

b0

)}
. (6)

Hence :

Y (t) = b0 ·


t∫
0

x (v) · k1 (t − v) · dv +
Y (0)
b0
· [1 − h1 (t)]

 , (7)

where b0 can be treated as a certain coefficient scaling the amplitude of Y(t), t belongs
to the time range nTi ≤ t ≤ nTi+Ti and step as well as impulse characteristics (h1(t) and

k1(t) respectively) refer to transfer function
K(s)
b0

for a0 = 1. Therefore, for t = nTi+Ti

one obtains:

Y (n · Ti + Ti) = Y (n · Ti) · [1 − h1 (Ti)] + b0 ·
Ti∫

0

x (n · Ti + t − v) · k1 (v) · dv. (8)



Linear operation of discrete signal tracking 343

Furthermore, the above formula yields the stability condition of operation (8), which
can be written in the form [5]:

0 < h1 (Ti) < 2. (9)

If we assume additionally that the operation of reading very quickly (inside of
interval (∆t)) brings to zero the value y(nTi), then formula (5) immediately yields:

Y (n · Ti + Ti) =

Ti∫
0

x (n · Ti + t − v) · k (v) · dv, (10)

where k(v) refers now to transfer function (2), for any parameters ai, bj.
The signal x(t) can be expressed in a “specific” form [3, 4, 5, 6,]:

x (n · Ti + t) = x
(
n · Ti

)
+ [x (n · Ti + Ti) − x (n · Ti)] · t

Ti
+

r∑
p=1

A (n · Ti, p) · sin π · t · p
Ti
.

(11)
The representation (11) remains in force for 0 ≤ t ≤ Ti. The Eq. (11) can represent

discontinuities in moments nTi, n = 0, 1, 2, ... It is obvious that values of amplitudes
A(nTi, p) are different for each n. Calculating the integral (10) we obtain [5]:

c

Ti∫
0

x (n · Ti + t − v) · k (v) · dv = H (Ti) · [x (n · Ti + Ti) − x (n · Ti)]+

+x (n · Ti) · h (Ti) +
r∑

p=1

A (n · Ti, p) · S (p,Ti) ,

(12)

where

H (Ti) =
1
Ti
·

Ti∫
0

h (t) · dt, S (p,Ti) =

Ti∫
0

sin
π · p · v

Ti
· k (t − v) · dv. (13)

For the considered time interval 0 ≤ t ≤ Ti and “smooth” signal x(t) is A(nTi, p)
= 0 and x(n · Ti + Ti) = x(n · Ti) + Ti · x(1)(n · Ti). These properties allow to rewrite the
Eq. (8) in the form:

Y (n · Ti + Ti) = Y (n · Ti) · [1 − hi (Ti)] + H1 (Ti) · [x (n · Ti + Ti) − x (n · Ti)]+

+x (n · Ti) · hi (Ti) +
r∑

p=1

A (n · Ti, p) · S1 (p,Ti) .
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Then, after simple transformations, we obtain:

D (n · Ti + Ti) = D (n · Ti) · [1 − h1 (Ti)] − x(1) (n · Ti) · Ti · [1 − H1 (Ti)]+

+

r∑
p=1

A (n · Ti, p) · S1 (p,Ti) ,
(14)

where x(1)(nTi) denotes the derivative of the “smooth” component of signal x(t). If
h1(Ti) = 1 and “non-smooth” components of signal x(t) are neglected, then an error
of the tracking action is caused only by certain “substitutive” delay of signal Y(t) in
relation to x(t). The considered delay is:

T01 = Ti · [1 − H1 (Ti)] (15)

and formula (10) can be rewritten in the form:

Y (n · Ti + Ti) = H (Ti) · [x (n · Ti + Ti) − x (n · Ti)] + x (n · Ti) · h (Ti)+

+

r∑
p=1

A (n · Ti, p) · S (p,Ti)
(16)

Hence, after transformations similar to those given above, we obtain:

D (n · Ti + Ti) = x (n · Ti + Ti) · [H (Ti) − 1] − x (n · Ti) · [H (Ti) − h (Ti)]+

+

r∑
p=1

A (n · Ti, p) · S (p,Ti).
(17)

Additionally, for h(Ti) = 1 is:

D (n · Ti + Ti) = −x(1) (n · Ti) · T0 +

r∑
p=1

A (n · Ti, p) · S (p,Ti), (18)

where

T0 = Ti · [1 − H (Ti)] .

In order to assure the high accuracy of discrete tracking operation on signal x(t)
we have to choose such parameters of K(s) that a0 = 1, h1(Ti) = 1 the delay T01
is minimized and susceptibilities S1(p,Ti) are minimized as well. The given list of
requirements applies to the first case among those considered above. The parameters
of K(s) chosen for assumptions referring to second case should minimize delay T0 as
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well as susceptibility S(p,Ti) and make that h(Ti) = 1. To avoid current overload of
the measuring device we should fulfill the additional condition:

sup |S (p, t)| < 1
0≤t≤Ti

(19)

The stability postulation for the mechanism can be treated as inessential. Similar-
ly, the duration time of reading ∆t does not generate further requirements, if initial
conditions are “efficiently” brought to zero. Taking the throughput of information into
account one should postulate small Ti.

2. PARTICULAR CASES, IF y(i)(nTi) = 0 FOR i ≥ 1

The “classical” dot-recorder with an oscillatory mechanism, described by the trans-
fer function:

K (s) =
ω2

0

ω2
0 + 2 · B · ω0s + s2

, (20)

where ω0 – pulsation of proper vibration, B – damping coefficient, has been
described many times [3, 4,]. Summarizing the published results, we can recognize
as optimal the following values: B = 0.65 and ω0Ti = 7.13 (then ω0Ti = 1.29). On
the other hand, for ω0Ti = 5 and B = 0.192, one obtains H1(Ti) = 1, i.e. T0ω0 = 0,
but condition (19) is not fulfilled. Let us note that condition h(Ti) = 1 is fulfilled for
significantly smaller products:

ω0 · Ti =
π + 2 · arcsinB

2 · √1 − B2
(21)

and the stability of the measuring mechanism, which is guaranteed for B > 0, has not
to be preserved under the above circumstances.

These circumstances allow to consider the operation with negative B. The cu-
rve ω0Ti(B) shown in Fig. 1 guarantees that condition h1(Ti = 1) is fulfilled. The
“associated” curve ω0T0(B) obtained for that case is shown as well. We can observe
that small values of damping coefficient B or even negative B are more advantageous
comparing them to value B recognized as optimal. The simulation experiments confirm
that condition (19) holds and sensitivities S1(p,Ti) for such “non-optimal” choice of
B, Ti are smaller or at least comparable in relation to the classic case, i.e. for B = 0.65,
ω0Ti = 7.13. The conclusions formulated above are supported by data gathered in Table
1 and curves shown in Fig. 2.
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Fig. 1. Determination of those values of product ω0Ti which lead to fulfillment of condition h1(Ti) = 1
and referring values of “substitute” delays ω0T0.

Fig. 2. The sensitivities S1(p,Ti) as functions of damping coefficient β in case when h1(Ti) = 1 holds.
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Table 1. The values of sensitivities S1(p,Ti) for various damping coefficients B.

B 0.65 -3.00 -2.50 -2.00 -1.50 -1.00 -0.50 0.00 0.50 0.90
ω0Ti 7.13 0.62 0.68 0.76 0.86 1.00 1.21 1.57 2.42 6.17

S(1, Ti) 0.59 0.51 0.52 0.54 0.56 0.59 0.62 0.67 0.72 0.66

S(2, Ti) 0.84 0.49 0.47 0.46 0.44 0.41 0.36 0.27 0.05 0.55

S(3, Ti) 0.48 0.37 0.35 0.34 0.31 0.28 0.23 0.17 0.09 0.30

S(4, Ti) 0.24 0.30 0.28 0.26 0.24 0.21 0.18 0.13 0.05 0.16

S(5, Ti) 0.12 0.25 0.23 0.21 0.19 0.17 0.14 0.10 0.05 0.09

0T0 1.29 0.49 0.53 0.58 0.64 0.72 0.83 1.00 1.30 1.81

The values S1(1, Ti) seem to be relatively high. Nevertheless we should take into
consideration the possibility of minimization by shortening of Ti. The shorter Ti the
smaller components A(nTi, 1). These decreases of the first amplitudes A(nTi, 1) can
be evaluated approximately – they are proportional to T2

i . For B = 0.6 we can observe
the distinct minimum of susceptibility functions referring to higher numbers p. Thus,
the value B = 0.6 ought to be chosen for non-smooth signals. In such a case classical
assumptions for the choice of value Ti are not recommended – the proper choice of Ti
should be done using (21). On the contrary, small positive values B or even negative
ones are better for smooth signals.

Fig. 3. The input signal x(t) and results of interpolation of signal Y (t) by broken lines for two cases, i.e.
for β = 0.65, ω0Ti = 7,13 and β = 0.0, ω0Ti = 1.57.

The input signal x(t) and points joined by a broken line representing results of
tracking action for input x(t) are shown in Fig. 3. The results in Fig. 3 have been
obtained for two sets of parameters: ω0 = 1s−1, B = 0.65, Ti = 7.13s and ω0 = 1s−1,
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B = 0, Ti = 1.57s. Considering the result Y(t) referring to the second set of parameters
we can observe that the delay of the “smooth” component of signal x(t) is about 1s
and the obtained effect is more advantageous than in the case of classic recording.

Fig. 4. The products ω0Ti, ω0T0, ω − 0T2 as functions of damping coefficient β for following n: 5, 10,
15, 20, 25, 30. The condition h1(Ti) has been fulfiled.

It is worth an additional explanation that negative B can be availed on the basis
of the mechanism of a moving-coil meter by equipping it with an extra coil. Then the
mechanism should be driven by the sum of x(t) and a supplementary signal which
represents a suitably amplified signal induced in the attached extra coil. Due to the
described modification the whole system is equipped with an additional component
(corrector) [6]. The corrector can be applied for other purposes as well. Let us assume
that the corrector transfer function is:

Kk (s) =
1 + sT1

1 + sT2
. (22)

Then the resultant transfer function of the system composed of a corrector and
the measuring mechanism is represented by the product of transfer functions (20) and
(22). For given B and ω0 one can chose parameters T1 and T2 aiming at fulfillment of
condition h1(Ti) = 1. After that a suitable value of T0 can be determined. The referring
simulations have been done for several completing assumptions. It has been assumed
that T1/T2 = n. The recommended choice of T2 should assure that the maximum of
h1(t) is smaller than h1(t)max = 2 but practically it should be almost equal to this value.
Fulfilling all conditions mentioned above one obtains curves ω0Ti(B, n), ω0T0(B, n) and
ω0T2(B, n) shown in Fig. 4. The referring curves representing sensitivities S1(p,Ti) are
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shown in Fig. 5. The changes of S1(p,Ti) do not depend heavily on n and B. It means
that the choice of Ti and T0 is crucial.

Fig. 5. The sensitivities S1(p,Ti) as functions of damping coefficient β and n = T1/T2.

The curves in Fig. 6 represent respectively: x(t) – input signal, Y1(t) – result of
continuous recording for 0 = 1s−1 and B = 0.65, Y2(t) – response of the system with
discrete recording for Ti = 1.7, ω0 = 1s−1, B = 0, T0 = 1s, Y3(t) – response of the
system with discrete recording for Ti = 0.44, ω0 = 1s−1, n = 30, T2 = 0.15, B = 1,
T0 = 0.25s. The points of discrete recording refer to points where curves Y2(t), Y3(t)
are “broken” (the recording is done in discontinuity points of derivatives of Y2(t) and
Y3(t)). The “heoretical” advantage caused by application of the corrector seems to be
undoubted, however some difficulties can appear if practical use of the corrector is
considered. The possibility of big values of corrector output signal appearing for big
n can be recognized as the main cause of these technical difficulties. Of course, the
mentioned technical inconvenience does not cause trouble during the simulation of a
real experiment. The omission of condition h1(t)max = 2 and extension of the range of
changes of B and n allow to continue the process of further diminishing of Ti and T0.

3. PARTICULAR CASES, WHEN y(i)(nTi) = 0 FOR i = 0, 1, . . . , m

Now we have no restrictions imposed on values of parameters of the transfer
function (2) and formula (10) is still in force. This allows to consider a wide class of
measuring devices, for example, devices with static gains greater than 1, those with
dynamics similar to certain “standards” (having properties of integrator, differentiator
or other “standards”), etc. Considering an extremely simple case, if

K (s) =
k

1 + s · T , (23)
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Fig. 6. Input signal x(t), the result of continuous-tracking action Y1(t) and results of discrete tracking
actions Y2(t), Y3(t) obtained under conditions described in the paper.

we obtain:

h (t) = k ·
(
1 − e−t/T

)
, Ti = −T · ln

(
1 − 1

k

)
, (24)

H (Ti) = k ·
{

1 − T
Ti
·
(
1 − e−Ti/T

)}
=

1

ln
(
1 − 1

k

)
+ k

(25)

and

S (p,Ti) =
k · π · p ·

(
cos (π · p) + 1

k − 1
)

[
1 +

[
π·p

ln(1−1
k)

]2
]
· ln

(
1 − 1

k

) . (26)

The curves representing quotients Ti/T , T0/T and susceptibility S(p,Ti) as functions
of gain k are shown in Fig. 7. We cannot obtain T0 = 0, but for sufficiently big k one can
obtain suitably small values Ti, T0 conserving small values of sensitivities S(p,Ti). For
example, if k = 5.5, T = 5s then Ti = 1s, T00.5s and S(1,Ti) = 0.63, S(2, Ti) = 0.0. . . ,
S(3,Ti) = 0.21, S(4,Ti) = -0.016, S(5,Ti) = 0.014. The input signal x(t), response of
the system with discrete recording Y11(t) and the result of discrete recording of Y2(t)
interpolated by means of a broken line are shown in Fig. 8a.

For a measuring device with integrating properties:

K (s) =
1

s · Tc · (1 + s · T )
(27)
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Fig. 7. The ratios Ti/T , T0/T and sensitivities S(p,Ti) as functions of k for h(Ti) = 1.

we obtain:

h (t) =
T
Tc
·
( t
T
+ e−

t
T − 1

)

and equation

Ti

T
+ e−Ti/T = 1 +

Tc

T
= 1 + Q (28)

Approximation of (28) yields

Ti

T
� 1 + Q − 0.48 · e−1·107·Q

or for big Q:

Ti � Tc ·
(
1 +

1
Q

)
,T0 �

1
2
· Tc ·

(
1 +

1
Q

)2

S (p,Tc) �
1[

1 +
(
π·p
1+Q

)2
] ·


π · p

Q · (1 + Q)
·
(
1 − e−(1+Q)

)
−

(
1 + 1

Q

)
π · p · [cos

(
π · p) − 1

] .
(29)

Now we can observe ratios T0/T similar to those obtained for measuring device
dynamics given by the first-order inertia model (23). The input signal x(t), response
of the system with discrete recording Y1(t) and the result of discrete recording after
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Fig. 8. a,b,c – exact explanations can be found in the paper.

interpolation with broken line are shown in Fig 8b. The presented results have been
obtained for Tc = 1s, Q = 5.

For differentiating properties of the measuring device:

K (s) =
s · Tr · ω0

s2 + 2 · B · ω0 · s + ω2
0

(30)

and given values B and ω0 and sufficiently big Tr one obtains two values Ti1, Ti2
yielding h[Ti] = 1. Putting B = 1 one can choose such Tr , that for Ti2 (larger component
of pair Ti1, Ti2) is H(Ti2) = 1. Due to the considered choice the delay is eliminated
completely. The curves representing product Trω0 as a function of those damping
coefficients B which make that h(Ti) = 1 and H(Ti2) = 1 are shown in Fig. 9. The
products Ti1ω0 and T0ω0 for Ti1 are presented in Fig. 9 too. The signal x(t) as well as
the response of the system with discrete recording for Ti2 (i.e. for T ) defined by the
following parameters ω0 = 1s−1, B = 16, Tr = 31.11s, ti2 = 1.28s are shown in Fig. 8c.
It results from Fig. 9 that time Ti1 and accompanying delay T0 are relatively “short” and
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Fig. 9. The products Trω0 as functions of B which make that for h(Ti1) = 1, delay T0 , 0 and for h(Ti2)
= 1 the delay is T0 = 0. The curves referring to those products and representing functions Ti1(B) and

T0(B) are shown as well.

the proposed choice of measuring device parameters can occur even more advantageous
than in case of considerably “longer” time Ti2 and T0 = 0. Necessary calculations (also
aimed at determining the susceptibility S(p,Ti)) have to be done using a computer.
That is why the formulation of analytical dependences seems to be a very difficult
task. Calculations made for the considered assumptions yield: S(1,Ti1) = 0.5, S(1,Ti2)
= 0.07, S(2,Ti1) = -0.43, S(2,Ti2) = -0.17, S(3,Ti1) = 0.35, S(3,Ti2) = 0.26, S(4,Ti1])
= -0.27, S(4,Ti2) = -0.34, S(5,Ti1) = 0.22, S(5,Ti2) = 0.38. We can expect that other
values of the damping coefficient B yield similar values of sensitivities.

4. SUMMARY

The principles for the choice of parameters of the recorder in case of dot-recording
based on an electromechanical measuring system (also in case of use of a corrector)
should differ from those applied classically. On the other hand, if h(Ti) = 1, then
linear operation of discrete tracking action in case of using the condition for zeroing
of values y(i)(nTi) = 0 (for i = 0, 1, 2,... m) allows to keep the tracking action errors
at a reasonably small level, however this property becomes real only for high values
of throughput of information (i.e. for “short” Ti). We must honestly admit that the
problem of discrete tracking action in case of nonlinear dynamics seems to be still
open.
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